Files
delphi-database/app/api/import_data.py

2388 lines
91 KiB
Python

"""
Data import API endpoints for CSV file uploads with auto-discovery mapping.
"""
import csv
import io
import re
import os
from pathlib import Path
from difflib import SequenceMatcher
from datetime import datetime, date, timezone
from decimal import Decimal
from typing import List, Dict, Any, Optional, Tuple
from fastapi import APIRouter, Depends, HTTPException, UploadFile, File as UploadFileForm, Form, Query
from sqlalchemy.orm import Session
from app.database.base import get_db
from app.auth.security import get_current_user
from app.models.user import User
from app.models.rolodex import Rolodex, Phone
from app.models.files import File
from app.models.ledger import Ledger
from app.models.qdro import QDRO
from app.models.pensions import Pension, PensionSchedule, MarriageHistory, DeathBenefit, SeparationAgreement, LifeTable, NumberTable, PensionResult
from app.models.lookups import Employee, FileType, FileStatus, TransactionType, TransactionCode, State, GroupLookup, Footer, PlanInfo, FormIndex, FormList, PrinterSetup, SystemSetup, FormKeyword
from app.models.additional import Payment, Deposit, FileNote, FormVariable, ReportVariable
from app.models.flexible import FlexibleImport
from app.models.audit import ImportAudit, ImportAuditFile
from app.config import settings
from app.utils.logging import import_logger
router = APIRouter(tags=["import"])
# Common encodings to try for legacy CSV files (order matters)
ENCODINGS = [
'utf-8-sig',
'utf-8',
'windows-1252',
'iso-8859-1',
'cp1252',
]
# Unified import order used across batch operations
IMPORT_ORDER = [
"STATES.csv", "GRUPLKUP.csv", "EMPLOYEE.csv", "FILETYPE.csv", "FILESTAT.csv",
"TRNSTYPE.csv", "TRNSLKUP.csv", "FOOTERS.csv", "SETUP.csv", "PRINTERS.csv",
"INX_LKUP.csv",
"ROLODEX.csv", "PHONE.csv", "FILES.csv", "LEDGER.csv", "TRNSACTN.csv",
"QDROS.csv", "PENSIONS.csv", "SCHEDULE.csv", "MARRIAGE.csv", "DEATH.csv", "SEPARATE.csv", "LIFETABL.csv", "NUMBERAL.csv", "PLANINFO.csv", "RESULTS.csv", "PAYMENTS.csv", "DEPOSITS.csv",
"FILENOTS.csv", "FORM_INX.csv", "FORM_LST.csv", "FVARLKUP.csv", "RVARLKUP.csv"
]
# CSV to Model mapping
CSV_MODEL_MAPPING = {
"ROLODEX.csv": Rolodex,
"ROLEX_V.csv": Rolodex, # Legacy/view alias
"PHONE.csv": Phone,
"FILES.csv": File,
"FILES_R.csv": File, # Legacy/report alias
"FILES_V.csv": File, # Legacy/view alias
"LEDGER.csv": Ledger,
"QDROS.csv": QDRO,
"PENSIONS.csv": Pension,
"SCHEDULE.csv": PensionSchedule,
"MARRIAGE.csv": MarriageHistory,
"DEATH.csv": DeathBenefit,
"SEPARATE.csv": SeparationAgreement,
"LIFETABL.csv": LifeTable,
"NUMBERAL.csv": NumberTable,
"EMPLOYEE.csv": Employee,
"FILETYPE.csv": FileType,
"FILESTAT.csv": FileStatus,
"TRNSTYPE.csv": TransactionType,
"TRNSLKUP.csv": TransactionCode,
"STATES.csv": State,
"GRUPLKUP.csv": GroupLookup,
"FOOTERS.csv": Footer,
"PLANINFO.csv": PlanInfo,
# Legacy alternate names from export directories
"FORM_INX.csv": FormIndex,
"FORM_LST.csv": FormList,
"PRINTERS.csv": PrinterSetup,
"SETUP.csv": SystemSetup,
# Additional models for complete legacy coverage
"DEPOSITS.csv": Deposit,
"FILENOTS.csv": FileNote,
"FVARLKUP.csv": FormVariable,
"RVARLKUP.csv": ReportVariable,
"PAYMENTS.csv": Payment,
"TRNSACTN.csv": Ledger, # Maps to existing Ledger model (same structure)
"INX_LKUP.csv": FormKeyword,
"RESULTS.csv": PensionResult
}
# Field mappings for CSV columns to database fields
# Legacy header synonyms used as hints only (not required). Auto-discovery will work without exact matches.
FIELD_MAPPINGS = {
"ROLODEX.csv": {
"Id": "id",
"Prefix": "prefix",
"First": "first",
"Middle": "middle",
"Last": "last",
"Suffix": "suffix",
"Title": "title",
"A1": "a1",
"A2": "a2",
"A3": "a3",
"City": "city",
"Abrev": "abrev",
"St": None, # Full state name - skip this field as model only has abrev
"Zip": "zip",
"Email": "email",
"DOB": "dob",
"SS#": "ss_number",
"Legal_Status": "legal_status",
"Group": "group",
"Memo": "memo"
},
"PHONE.csv": {
"Id": "rolodex_id",
"Phone": "phone",
"Location": "location"
},
"FILES.csv": {
"File_No": "file_no",
"Id": "id",
"File_Type": "file_type",
"Regarding": "regarding",
"Opened": "opened",
"Closed": "closed",
"Empl_Num": "empl_num",
"Rate_Per_Hour": "rate_per_hour",
"Status": "status",
"Footer_Code": "footer_code",
"Opposing": "opposing",
"Hours": "hours",
"Hours_P": "hours_p",
"Trust_Bal": "trust_bal",
"Trust_Bal_P": "trust_bal_p",
"Hourly_Fees": "hourly_fees",
"Hourly_Fees_P": "hourly_fees_p",
"Flat_Fees": "flat_fees",
"Flat_Fees_P": "flat_fees_p",
"Disbursements": "disbursements",
"Disbursements_P": "disbursements_p",
"Credit_Bal": "credit_bal",
"Credit_Bal_P": "credit_bal_p",
"Total_Charges": "total_charges",
"Total_Charges_P": "total_charges_p",
"Amount_Owing": "amount_owing",
"Amount_Owing_P": "amount_owing_p",
"Transferable": "transferable",
"Memo": "memo"
},
"LEDGER.csv": {
"File_No": "file_no",
"Date": "date",
"Item_No": "item_no",
"Empl_Num": "empl_num",
"T_Code": "t_code",
"T_Type": "t_type",
"T_Type_L": "t_type_l",
"Quantity": "quantity",
"Rate": "rate",
"Amount": "amount",
"Billed": "billed",
"Note": "note"
},
"QDROS.csv": {
"File_No": "file_no",
"Version": "version",
"Plan_Id": "plan_id",
"^1": "field1",
"^2": "field2",
"^Part": "part",
"^AltP": "altp",
"^Pet": "pet",
"^Res": "res",
"Case_Type": "case_type",
"Case_Code": "case_code",
"Section": "section",
"Case_Number": "case_number",
"Judgment_Date": "judgment_date",
"Valuation_Date": "valuation_date",
"Married_On": "married_on",
"Percent_Awarded": "percent_awarded",
"Ven_City": "ven_city",
"Ven_Cnty": "ven_cnty",
"Ven_St": "ven_st",
"Draft_Out": "draft_out",
"Draft_Apr": "draft_apr",
"Final_Out": "final_out",
"Judge": "judge",
"Form_Name": "form_name"
},
"PENSIONS.csv": {
"File_No": "file_no",
"Version": "version",
"Plan_Id": "plan_id",
"Plan_Name": "plan_name",
"Title": "title",
"First": "first",
"Last": "last",
"Birth": "birth",
"Race": "race",
"Sex": "sex",
"Info": "info",
"Valu": "valu",
"Accrued": "accrued",
"Vested_Per": "vested_per",
"Start_Age": "start_age",
"COLA": "cola",
"Max_COLA": "max_cola",
"Withdrawal": "withdrawal",
"Pre_DR": "pre_dr",
"Post_DR": "post_dr",
"Tax_Rate": "tax_rate"
},
"EMPLOYEE.csv": {
"Empl_Num": "empl_num",
"Rate_Per_Hour": "rate_per_hour"
# "Empl_Id": not a field in Employee model, using empl_num as identifier
# Model has additional fields (first_name, last_name, title, etc.) not in CSV
},
"STATES.csv": {
"Abrev": "abbreviation",
"St": "name"
},
"GRUPLKUP.csv": {
"Code": "group_code",
"Description": "description"
# "Title": field not present in model, skipping
},
"TRNSLKUP.csv": {
"T_Code": "t_code",
"T_Type": "t_type",
# "T_Type_L": not a field in TransactionCode model
"Amount": "default_rate",
"Description": "description"
},
"TRNSTYPE.csv": {
"T_Type": "t_type",
"T_Type_L": "description"
# "Header": maps to debit_credit but needs data transformation
# "Footer": doesn't align with active boolean field
# These fields may need custom handling or model updates
},
"FILETYPE.csv": {
"File_Type": "type_code",
"Description": "description",
"Default_Rate": "default_rate"
},
"FILESTAT.csv": {
"Status": "status_code",
"Status_Code": "status_code",
"Definition": "description",
"Description": "description",
"Send": "send",
"Footer_Code": "footer_code",
"Sort_Order": "sort_order"
},
"FOOTERS.csv": {
"F_Code": "footer_code",
"F_Footer": "content"
# Description is optional - not required for footers
},
"PLANINFO.csv": {
"Plan_Id": "plan_id",
"Plan_Name": "plan_name",
"Plan_Type": "plan_type",
"Sponsor": "sponsor",
"Administrator": "administrator",
"Address1": "address1",
"Address2": "address2",
"City": "city",
"State": "state",
"Zip_Code": "zip_code",
"Phone": "phone",
"Notes": "notes"
},
"INX_LKUP.csv": {
"Keyword": "keyword",
"Description": "description"
},
"FORM_INX.csv": {
"Name": "form_id",
"Keyword": "keyword"
},
"FORM_LST.csv": {
"Name": "form_id",
"Memo": "content",
"Status": "status"
},
"PRINTERS.csv": {
# Legacy variants
"Printer_Name": "printer_name",
"Description": "description",
"Driver": "driver",
"Port": "port",
"Default_Printer": "default_printer",
# Observed legacy headers from export
"Number": "number",
"Name": "printer_name",
"Page_Break": "page_break",
"Setup_St": "setup_st",
"Reset_St": "reset_st",
"B_Underline": "b_underline",
"E_Underline": "e_underline",
"B_Bold": "b_bold",
"E_Bold": "e_bold",
# Optional report toggles
"Phone_Book": "phone_book",
"Rolodex_Info": "rolodex_info",
"Envelope": "envelope",
"File_Cabinet": "file_cabinet",
"Accounts": "accounts",
"Statements": "statements",
"Calendar": "calendar",
},
"SETUP.csv": {
"Setting_Key": "setting_key",
"Setting_Value": "setting_value",
"Description": "description",
"Setting_Type": "setting_type"
},
"SCHEDULE.csv": {
"File_No": "file_no",
"Version": "version",
"Vests_On": "vests_on",
"Vests_At": "vests_at"
},
"MARRIAGE.csv": {
"File_No": "file_no",
"Version": "version",
"Married_From": "married_from",
"Married_To": "married_to",
"Married_Years": "married_years",
"Service_From": "service_from",
"Service_To": "service_to",
"Service_Years": "service_years",
"Marital_%": "marital_percent"
},
"DEATH.csv": {
"File_No": "file_no",
"Version": "version",
"Lump1": "lump1",
"Lump2": "lump2",
"Growth1": "growth1",
"Growth2": "growth2",
"Disc1": "disc1",
"Disc2": "disc2"
},
"SEPARATE.csv": {
"File_No": "file_no",
"Version": "version",
"Separation_Rate": "terms"
},
"LIFETABL.csv": {
"AGE": "age",
"LE_AA": "le_aa",
"NA_AA": "na_aa",
"LE_AM": "le_am",
"NA_AM": "na_am",
"LE_AF": "le_af",
"NA_AF": "na_af",
"LE_WA": "le_wa",
"NA_WA": "na_wa",
"LE_WM": "le_wm",
"NA_WM": "na_wm",
"LE_WF": "le_wf",
"NA_WF": "na_wf",
"LE_BA": "le_ba",
"NA_BA": "na_ba",
"LE_BM": "le_bm",
"NA_BM": "na_bm",
"LE_BF": "le_bf",
"NA_BF": "na_bf",
"LE_HA": "le_ha",
"NA_HA": "na_ha",
"LE_HM": "le_hm",
"NA_HM": "na_hm",
"LE_HF": "le_hf",
"NA_HF": "na_hf"
},
"NUMBERAL.csv": {
"Month": "month",
"NA_AA": "na_aa",
"NA_AM": "na_am",
"NA_AF": "na_af",
"NA_WA": "na_wa",
"NA_WM": "na_wm",
"NA_WF": "na_wf",
"NA_BA": "na_ba",
"NA_BM": "na_bm",
"NA_BF": "na_bf",
"NA_HA": "na_ha",
"NA_HM": "na_hm",
"NA_HF": "na_hf"
},
"RESULTS.csv": {
"Accrued": "accrued",
"Start_Age": "start_age",
"COLA": "cola",
"Withdrawal": "withdrawal",
"Pre_DR": "pre_dr",
"Post_DR": "post_dr",
"Tax_Rate": "tax_rate",
"Age": "age",
"Years_From": "years_from",
"Life_Exp": "life_exp",
"EV_Monthly": "ev_monthly",
"Payments": "payments",
"Pay_Out": "pay_out",
"Fund_Value": "fund_value",
"PV": "pv",
"Mortality": "mortality",
"PV_AM": "pv_am",
"PV_AMT": "pv_amt",
"PV_Pre_DB": "pv_pre_db",
"PV_Annuity": "pv_annuity",
"WV_AT": "wv_at",
"PV_Plan": "pv_plan",
"Years_Married": "years_married",
"Years_Service": "years_service",
"Marr_Per": "marr_per",
"Marr_Amt": "marr_amt"
},
# Additional CSV file mappings
"DEPOSITS.csv": {
"Deposit_Date": "deposit_date",
"Total": "total"
},
"FILENOTS.csv": {
"File_No": "file_no",
"Memo_Date": "memo_date",
"Memo_Note": "memo_note"
},
"FVARLKUP.csv": {
"Identifier": "identifier",
"Query": "query",
"Response": "response"
},
"RVARLKUP.csv": {
"Identifier": "identifier",
"Query": "query"
},
"PAYMENTS.csv": {
"Deposit_Date": "deposit_date",
"File_No": "file_no",
"Id": "client_id",
"Regarding": "regarding",
"Amount": "amount",
"Note": "note"
},
"TRNSACTN.csv": {
# Maps to Ledger model - same structure as LEDGER.csv
"File_No": "file_no",
"Date": "date",
"Item_No": "item_no",
"Empl_Num": "empl_num",
"T_Code": "t_code",
"T_Type": "t_type",
"T_Type_L": "t_type_l",
"Quantity": "quantity",
"Rate": "rate",
"Amount": "amount",
"Billed": "billed",
"Note": "note"
}
}
def parse_date(date_str: str) -> Optional[date]:
"""Parse date string in various formats"""
if not date_str or date_str.strip() == "":
return None
date_formats = [
"%Y-%m-%d",
"%m/%d/%Y",
"%d/%m/%Y",
"%m-%d-%Y",
"%d-%m-%Y",
"%Y/%m/%d"
]
for fmt in date_formats:
try:
return datetime.strptime(date_str.strip(), fmt).date()
except ValueError:
continue
return None
def make_json_safe(value: Any) -> Any:
"""Recursively convert values to JSON-serializable types.
- date/datetime -> ISO string
- Decimal -> float
- dict/list -> recurse
"""
if isinstance(value, (datetime, date)):
return value.isoformat()
if isinstance(value, Decimal):
try:
return float(value)
except Exception:
return str(value)
if isinstance(value, dict):
return {k: make_json_safe(v) for k, v in value.items()}
if isinstance(value, list):
return [make_json_safe(v) for v in value]
return value
def parse_csv_robust(csv_content: str) -> Tuple[List[Dict[str, str]], List[str]]:
"""Parse CSV text robustly by handling broken newlines in unquoted fields.
Returns tuple of (rows_as_dicts, headers)
"""
lines = (csv_content or "").strip().split('\n')
if not lines or (len(lines) == 1 and not lines[0].strip()):
return [], []
# Parse headers using the csv module to respect quoting
header_reader = csv.reader(io.StringIO(lines[0]))
headers = next(header_reader)
headers = [h.strip() for h in headers]
rows_data: List[Dict[str, str]] = []
for line_num, line in enumerate(lines[1:], start=2):
# Skip empty lines
if not line.strip():
continue
try:
# Parse each line independently; avoids multiline parse explosions
line_reader = csv.reader(io.StringIO(line))
fields = next(line_reader)
fields = [f.strip() for f in fields]
# If clearly malformed (too few fields), skip
if len(fields) < max(1, len(headers) // 2):
continue
# Pad or truncate to header length
while len(fields) < len(headers):
fields.append("")
fields = fields[:len(headers)]
row_dict = dict(zip(headers, fields))
rows_data.append(row_dict)
except Exception:
# Skip malformed row
continue
return rows_data, headers
def parse_csv_with_fallback(text: str) -> Tuple[List[Dict[str, str]], List[str]]:
"""Try csv.DictReader first; on failure, fall back to robust parser."""
try:
reader = csv.DictReader(io.StringIO(text), delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
headers_local = reader.fieldnames or []
rows_local: List[Dict[str, str]] = []
for r in reader:
rows_local.append(r)
return rows_local, headers_local
except Exception:
return parse_csv_robust(text)
def _normalize_label(label: str) -> str:
"""Normalize a header/field label for fuzzy comparison."""
if not label:
return ""
# Lowercase, replace separators with space, remove non-alphanumerics, expand common short forms
lowered = label.strip().lower()
# Replace separators
lowered = re.sub(r"[\s\-]+", "_", lowered)
# Remove non-word characters except underscore
lowered = re.sub(r"[^a-z0-9_]", "", lowered)
# Expand a few common abbreviations
replacements = {
"num": "number",
"no": "number",
"amt": "amount",
"addr": "address",
"st": "state",
"dob": "dateofbirth",
"ss": "ssnumber",
}
tokens = [replacements.get(t, t) for t in lowered.split("_") if t]
return "".join(tokens)
def _get_model_columns(model_class) -> Tuple[Dict[str, Any], List[str]]:
"""Return model columns mapping name->Column and list of primary key column names."""
columns = {}
pk_names = []
for col in model_class.__table__.columns:
if col.name in {"created_at", "updated_at"}:
continue
columns[col.name] = col
if col.primary_key:
pk_names.append(col.name)
return columns, pk_names
def _build_dynamic_mapping(headers: List[str], model_class, file_type: str) -> Dict[str, Any]:
"""Create a mapping from CSV headers to model fields using synonyms and fuzzy similarity.
Returns a dict with keys: mapping (csv_header->db_field), suggestions, unmapped_headers, mapped_headers
"""
model_columns, _ = _get_model_columns(model_class)
model_field_names = list(model_columns.keys())
# Start with legacy mapping hints when available
legacy_map = FIELD_MAPPINGS.get(file_type, {}) or {}
mapping: Dict[str, Optional[str]] = {}
suggestions: Dict[str, List[Tuple[str, float]]] = {}
used_db_fields: set[str] = set()
# 1) Exact legacy header key usage
for header in headers:
if header in legacy_map and legacy_map[header] is not None:
candidate = legacy_map[header]
if candidate in model_field_names and candidate not in used_db_fields:
mapping[header] = candidate
used_db_fields.add(candidate)
# 2) Direct exact match against model fields (case-insensitive and normalized)
normalized_model = {name: _normalize_label(name) for name in model_field_names}
normalized_to_model = {v: k for k, v in normalized_model.items()}
for header in headers:
if header in mapping:
continue
normalized_header = _normalize_label(header)
if normalized_header in normalized_to_model:
candidate = normalized_to_model[normalized_header]
if candidate not in used_db_fields:
mapping[header] = candidate
used_db_fields.add(candidate)
# 3) Fuzzy best-match based on normalized strings
for header in headers:
if header in mapping:
continue
normalized_header = _normalize_label(header)
best_candidate = None
best_score = 0.0
candidate_list: List[Tuple[str, float]] = []
for model_field in model_field_names:
if model_field in used_db_fields:
continue
nm = normalized_model[model_field]
if not nm or not normalized_header:
score = 0.0
else:
# Combine ratio and partial containment heuristic
ratio = SequenceMatcher(None, normalized_header, nm).ratio()
containment = 1.0 if (normalized_header in nm or nm in normalized_header) else 0.0
score = max(ratio, 0.85 if containment else 0.0)
candidate_list.append((model_field, score))
if score > best_score:
best_score = score
best_candidate = model_field
# Keep top 3 suggestions for UI
suggestions[header] = sorted(candidate_list, key=lambda x: x[1], reverse=True)[:3]
# Apply only if score above threshold
if best_candidate and best_score >= 0.82:
mapping[header] = best_candidate
used_db_fields.add(best_candidate)
# 4) Any header explicitly mapped to None in legacy map is considered intentionally skipped
for header in headers:
if header not in mapping and header in legacy_map and legacy_map[header] is None:
mapping[header] = None
mapped_headers = {h: f for h, f in mapping.items() if f is not None}
unmapped_headers = [h for h in headers if h not in mapping or mapping[h] is None]
return {
"mapping": mapping,
"mapped_headers": mapped_headers,
"unmapped_headers": unmapped_headers,
"suggestions": suggestions,
}
def _get_required_fields(model_class) -> List[str]:
"""Infer required (non-nullable) fields for a model to avoid DB errors.
Excludes primary keys (which might be autoincrement or provided) and timestamp mixins.
"""
required = []
for col in model_class.__table__.columns:
if col.name in {"created_at", "updated_at"}:
continue
if col.primary_key:
# If PK is a string or composite, we cannot assume optional; handle separately
continue
try:
is_required = not getattr(col, "nullable", True)
except Exception:
is_required = False
if is_required:
required.append(col.name)
return required
def convert_value(value: str, field_name: str) -> Any:
"""Convert string value to appropriate type based on field name"""
if not value or value.strip() == "" or value.strip().lower() in ["null", "none", "n/a"]:
return None
value = value.strip()
# Date fields
if any(word in field_name.lower() for word in [
"date", "dob", "birth", "opened", "closed", "judgment", "valuation", "married", "vests_on", "service"
]):
parsed_date = parse_date(value)
return parsed_date
# Boolean fields
if any(word in field_name.lower() for word in [
"active", "default_printer", "billed", "transferable", "send",
# PrinterSetup legacy toggles
"phone_book", "rolodex_info", "envelope", "file_cabinet", "accounts", "statements", "calendar"
]):
if value.lower() in ["true", "1", "yes", "y", "on", "active"]:
return True
elif value.lower() in ["false", "0", "no", "n", "off", "inactive"]:
return False
else:
return None
# Numeric fields (float)
if any(word in field_name.lower() for word in [
"rate", "hour", "bal", "fee", "amount", "owing", "transfer", "valu",
"accrued", "vested", "cola", "tax", "percent", "benefit_amount", "mortality",
"value"
]) or field_name.lower().startswith(("na_", "le_")):
try:
# Remove currency symbols and commas
cleaned_value = value.replace("$", "").replace(",", "").replace("%", "")
return float(cleaned_value)
except ValueError:
return 0.0
# Integer fields
if any(word in field_name.lower() for word in [
"item_no", "age", "start_age", "version", "line_number", "sort_order", "empl_num", "month", "number"
]):
try:
return int(float(value)) # Handle cases like "1.0"
except ValueError:
# For employee numbers, return None to skip the record rather than 0
if "empl_num" in field_name.lower():
return None
return 0
# String fields - limit length to prevent database errors
if len(value) > 500: # Reasonable limit for most string fields
return value[:500]
return value
def validate_foreign_keys(model_data: dict, model_class, db: Session) -> list[str]:
"""Validate foreign key relationships before inserting data"""
errors = []
# Check Phone -> Rolodex relationship
if model_class == Phone and "rolodex_id" in model_data:
rolodex_id = model_data["rolodex_id"]
if rolodex_id and not db.query(Rolodex).filter(Rolodex.id == rolodex_id).first():
errors.append(f"Rolodex ID '{rolodex_id}' not found")
# Check File -> Rolodex relationship
if model_class == File and "id" in model_data:
rolodex_id = model_data["id"]
if rolodex_id and not db.query(Rolodex).filter(Rolodex.id == rolodex_id).first():
errors.append(f"Owner Rolodex ID '{rolodex_id}' not found")
# Add more foreign key validations as needed
return errors
@router.get("/available-files")
async def get_available_csv_files(current_user: User = Depends(get_current_user)):
"""Get list of available CSV files for import"""
return {
"available_files": list(CSV_MODEL_MAPPING.keys()),
"descriptions": {
"ROLODEX.csv": "Customer/contact information",
"ROLEX_V.csv": "Customer/contact information (alias)",
"PHONE.csv": "Phone numbers linked to customers",
"FILES.csv": "Client files and cases",
"FILES_R.csv": "Client files and cases (alias)",
"FILES_V.csv": "Client files and cases (alias)",
"LEDGER.csv": "Financial transactions per file",
"QDROS.csv": "Legal documents and court orders",
"PENSIONS.csv": "Pension calculation data",
"SCHEDULE.csv": "Vesting schedules for pensions",
"MARRIAGE.csv": "Marriage history data",
"DEATH.csv": "Death benefit calculations",
"SEPARATE.csv": "Separation agreements",
"EMPLOYEE.csv": "Staff and employee information",
"STATES.csv": "US States lookup table",
"FILETYPE.csv": "File type categories",
"FILESTAT.csv": "File status codes",
"FOOTERS.csv": "Document footers and signatures",
"DEPOSITS.csv": "Daily bank deposit summaries",
"FILENOTS.csv": "File notes and case memos",
"FVARLKUP.csv": "Form template variables",
"RVARLKUP.csv": "Report template variables",
"PAYMENTS.csv": "Individual payments within deposits",
"TRNSACTN.csv": "Transaction details (maps to Ledger)",
"INX_LKUP.csv": "Form keywords lookup",
"PLANINFO.csv": "Pension plan information",
"RESULTS.csv": "Pension computed results",
"LIFETABL.csv": "Life expectancy table by age, sex, and race (rich typed)",
"NUMBERAL.csv": "Monthly survivor counts by sex and race (rich typed)"
},
"auto_discovery": True
}
@router.post("/upload/{file_type}")
async def import_csv_data(
file_type: str,
file: UploadFile = UploadFileForm(...),
replace_existing: bool = Form(False),
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Import data from CSV file"""
# Validate file type
if file_type not in CSV_MODEL_MAPPING:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {file_type}. Available types: {list(CSV_MODEL_MAPPING.keys())}"
)
# Validate file extension
if not file.filename.endswith('.csv'):
raise HTTPException(status_code=400, detail="File must be a CSV file")
model_class = CSV_MODEL_MAPPING[file_type]
# Legacy mapping hints used internally by auto-discovery; not used strictly
legacy_hint_map = FIELD_MAPPINGS.get(file_type, {})
try:
# Read CSV content
content = await file.read()
# Try multiple encodings for legacy CSV files
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
raise HTTPException(status_code=400, detail="Could not decode CSV file. Please ensure it's saved in UTF-8, Windows-1252, or ISO-8859-1 encoding.")
# Note: preprocess_csv helper removed as unused; robust parsing handled below
# Custom robust parser for problematic legacy CSV files
class MockCSVReader:
def __init__(self, data, fieldnames):
self.data = data
self.fieldnames = fieldnames
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index >= len(self.data):
raise StopIteration
row = self.data[self.index]
self.index += 1
return row
try:
lines = csv_content.strip().split('\n')
if not lines:
raise ValueError("Empty CSV file")
# Parse header using proper CSV parsing
header_reader = csv.reader(io.StringIO(lines[0]))
headers = next(header_reader)
headers = [h.strip() for h in headers]
# Debug logging removed in API path; rely on audit/logging if needed
# Build dynamic header mapping for this file/model
mapping_info = _build_dynamic_mapping(headers, model_class, file_type)
# Parse data rows with proper CSV parsing
rows_data = []
skipped_rows = 0
for line_num, line in enumerate(lines[1:], start=2):
# Skip empty lines
if not line.strip():
continue
try:
# Use proper CSV parsing to handle commas within quoted fields
line_reader = csv.reader(io.StringIO(line))
fields = next(line_reader)
fields = [f.strip() for f in fields]
# Skip rows that are clearly malformed (too few fields)
if len(fields) < len(headers) // 2: # Less than half the expected fields
skipped_rows += 1
continue
# Pad or truncate to match header length
while len(fields) < len(headers):
fields.append('')
fields = fields[:len(headers)]
row_dict = dict(zip(headers, fields))
rows_data.append(row_dict)
except Exception as row_error:
import_logger.log_import_error(line_num, str(row_error), dict(zip(headers, fields)) if len(fields) <= len(headers) else None)
skipped_rows += 1
continue
csv_reader = MockCSVReader(rows_data, headers)
# Parsing summary suppressed to avoid noisy stdout in API
except Exception as e:
# Keep error minimal for client; internal logging can capture 'e'
raise HTTPException(status_code=400, detail=f"Could not parse CSV file. The file appears to have serious formatting issues. Error: {str(e)}")
imported_count = 0
created_count = 0
updated_count = 0
errors = []
flexible_saved = 0
mapped_headers = mapping_info.get("mapped_headers", {})
unmapped_headers = mapping_info.get("unmapped_headers", [])
# Special handling: assign line numbers per form for FORM_LST.csv
form_lst_line_counters: Dict[str, int] = {}
# If replace_existing is True, delete all existing records and related flexible extras
if replace_existing:
db.query(model_class).delete()
db.query(FlexibleImport).filter(
FlexibleImport.file_type == file_type,
FlexibleImport.target_table == model_class.__tablename__,
).delete()
db.commit()
for row_num, row in enumerate(csv_reader, start=2): # Start at 2 for header row
try:
# Convert CSV row to model data
model_data: Dict[str, Any] = {}
# Apply discovered mapping
for csv_field, db_field in mapped_headers.items():
if csv_field in row and db_field is not None:
converted_value = convert_value(row[csv_field], db_field)
if converted_value is not None:
model_data[db_field] = converted_value
# Inject sequential line_number for FORM_LST rows grouped by form_id
if file_type == "FORM_LST.csv":
form_id_value = model_data.get("form_id")
if form_id_value:
current = form_lst_line_counters.get(str(form_id_value), 0) + 1
form_lst_line_counters[str(form_id_value)] = current
# Only set if not provided
if "line_number" not in model_data:
model_data["line_number"] = current
# Skip empty rows
if not any(model_data.values()):
continue
# Fallback: if required non-nullable fields are missing, store row as flexible only
required_fields = _get_required_fields(model_class)
missing_required = [f for f in required_fields if model_data.get(f) in (None, "")]
if missing_required:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data={
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"missing_required": missing_required,
},
)
)
flexible_saved += 1
# Do not attempt to insert into strict model; continue to next row
continue
# Special validation for models with required fields
if model_class == Phone:
if 'phone' not in model_data or not model_data['phone']:
continue # Skip phone records without a phone number
if model_class == Rolodex:
if 'last' not in model_data or not model_data['last']:
continue # Skip rolodex records without a last name/company name
if model_class == Ledger:
# Skip ledger records without required fields
if 'empl_num' not in model_data or not model_data['empl_num']:
continue # Skip ledger records without employee number
if 'file_no' not in model_data or not model_data['file_no']:
continue # Skip ledger records without file number
# Create or update model instance
instance = None
# Upsert behavior for printers
if model_class == PrinterSetup:
# Determine primary key field name
_, pk_names = _get_model_columns(model_class)
pk_field_name_local = pk_names[0] if len(pk_names) == 1 else None
pk_value_local = model_data.get(pk_field_name_local) if pk_field_name_local else None
if pk_field_name_local and pk_value_local:
existing = db.query(model_class).filter(getattr(model_class, pk_field_name_local) == pk_value_local).first()
if existing:
# Update mutable fields
for k, v in model_data.items():
if k != pk_field_name_local:
setattr(existing, k, v)
instance = existing
updated_count += 1
else:
instance = model_class(**model_data)
db.add(instance)
created_count += 1
else:
# Fallback to insert if PK missing
instance = model_class(**model_data)
db.add(instance)
created_count += 1
db.flush()
# Enforce single default
try:
if bool(model_data.get("default_printer")):
db.query(model_class).filter(getattr(model_class, pk_field_name_local) != getattr(instance, pk_field_name_local)).update({model_class.default_printer: False})
except Exception:
pass
else:
instance = model_class(**model_data)
db.add(instance)
db.flush() # Ensure PK is available
# Capture PK details for flexible storage linkage (single-column PKs only)
_, pk_names = _get_model_columns(model_class)
pk_field_name = pk_names[0] if len(pk_names) == 1 else None
pk_value = None
if pk_field_name:
try:
pk_value = getattr(instance, pk_field_name)
except Exception:
pk_value = None
# Save unmapped fields into flexible storage (privacy-first, per-row JSON)
extra_data = {}
for csv_field in unmapped_headers:
if csv_field in row and row[csv_field] not in (None, ""):
extra_data[csv_field] = row[csv_field]
if extra_data:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=pk_field_name,
primary_key_value=str(pk_value) if pk_value is not None else None,
extra_data=extra_data,
)
)
flexible_saved += 1
imported_count += 1
# Commit every 100 records to avoid memory issues
if imported_count % 100 == 0:
db.commit()
except Exception as e:
# Rollback the transaction for this record
db.rollback()
# As a robustness measure, persist row in flexible storage instead of counting as error
try:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data={
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"error": str(e),
},
)
)
flexible_saved += 1
except Exception as flex_e:
errors.append({
"row": row_num,
"error": f"{str(e)} | Flexible save failed: {str(flex_e)}",
"data": row,
})
continue
# Final commit
db.commit()
result = {
"file_type": file_type,
"imported_count": imported_count,
"errors": errors[:10], # Limit errors to first 10
"total_errors": len(errors),
"auto_mapping": {
"mapped_headers": mapped_headers,
"unmapped_headers": unmapped_headers,
"flexible_saved_rows": flexible_saved,
},
}
# Include create/update breakdown for printers
if file_type == "PRINTERS.csv":
result["created_count"] = created_count
result["updated_count"] = updated_count
if errors:
result["warning"] = f"Import completed with {len(errors)} errors"
return result
except Exception as e:
# Suppress stdout debug prints in API layer
db.rollback()
raise HTTPException(status_code=500, detail=f"Import failed: {str(e)}")
@router.get("/status")
async def get_import_status(db: Session = Depends(get_db), current_user: User = Depends(get_current_user)):
"""Get current import status and record counts"""
status = {}
for file_type, model_class in CSV_MODEL_MAPPING.items():
try:
count = db.query(model_class).count()
status[file_type] = {
"table_name": model_class.__tablename__,
"record_count": count
}
except Exception as e:
status[file_type] = {
"table_name": model_class.__tablename__,
"record_count": 0,
"error": str(e)
}
return status
@router.delete("/clear/{file_type}")
async def clear_table_data(
file_type: str,
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Clear all data from a specific table"""
if file_type not in CSV_MODEL_MAPPING:
raise HTTPException(status_code=400, detail=f"Unknown file type: {file_type}")
model_class = CSV_MODEL_MAPPING[file_type]
try:
deleted_count = db.query(model_class).count()
db.query(model_class).delete()
# Also clear any flexible rows linked to this target table and file type
db.query(FlexibleImport).filter(
FlexibleImport.file_type == file_type,
FlexibleImport.target_table == model_class.__tablename__,
).delete()
db.commit()
return {
"file_type": file_type,
"table_name": model_class.__tablename__,
"deleted_count": deleted_count
}
except Exception as e:
db.rollback()
raise HTTPException(status_code=500, detail=f"Clear operation failed: {str(e)}")
@router.post("/validate/{file_type}")
async def validate_csv_file(
file_type: str,
file: UploadFile = UploadFileForm(...),
current_user: User = Depends(get_current_user)
):
"""Validate CSV file structure without importing"""
if file_type not in CSV_MODEL_MAPPING:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_type}")
if not file.filename.endswith('.csv'):
raise HTTPException(status_code=400, detail="File must be a CSV file")
# Use auto-discovery mapping for validation
try:
content = await file.read()
# Try multiple encodings for legacy CSV files
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
raise HTTPException(status_code=400, detail="Could not decode CSV file. Please ensure it's saved in UTF-8, Windows-1252, or ISO-8859-1 encoding.")
rows_list, csv_headers = parse_csv_with_fallback(csv_content)
model_class = CSV_MODEL_MAPPING[file_type]
mapping_info = _build_dynamic_mapping(csv_headers, model_class, file_type)
mapped_headers = mapping_info["mapped_headers"]
unmapped_headers = mapping_info["unmapped_headers"]
# Sample data validation
sample_rows = []
errors = []
for row_num, row in enumerate(rows_list, start=2):
if row_num > 12: # Only check first 10 data rows
break
sample_rows.append(row)
# Check for data type issues on mapped fields
for csv_field, db_field in mapped_headers.items():
if csv_field in row and row[csv_field]:
try:
convert_value(row[csv_field], db_field)
except Exception as e:
errors.append({
"row": row_num,
"field": csv_field,
"value": row[csv_field],
"error": str(e)
})
return {
"file_type": file_type,
# Consider valid if we can map at least one column; we don't require exact header match
"valid": len(mapped_headers) > 0 and len(errors) == 0,
"headers": {
"found": csv_headers,
"mapped": mapped_headers,
"unmapped": unmapped_headers,
},
"sample_data": sample_rows,
"validation_errors": errors[:5], # First 5 errors only
"total_errors": len(errors),
"auto_mapping": {
"suggestions": mapping_info["suggestions"],
},
}
except Exception as e:
# Suppress stdout debug prints in API layer
raise HTTPException(status_code=500, detail=f"Validation failed: {str(e)}")
@router.get("/progress/{import_id}")
async def get_import_progress(
import_id: str,
current_user: User = Depends(get_current_user)
):
"""Get import progress status (placeholder for future implementation)"""
# This would be used for long-running imports with background tasks
return {
"import_id": import_id,
"status": "not_implemented",
"message": "Real-time progress tracking not yet implemented"
}
@router.post("/batch-validate")
async def batch_validate_csv_files(
files: List[UploadFile] = UploadFileForm(...),
current_user: User = Depends(get_current_user)
):
"""Validate multiple CSV files without importing"""
if len(files) > 25:
raise HTTPException(status_code=400, detail="Maximum 25 files allowed per batch")
validation_results = []
for file in files:
file_type = file.filename
if file_type not in CSV_MODEL_MAPPING:
validation_results.append({
"file_type": file_type,
"valid": False,
"error": f"Unsupported file type: {file_type}"
})
continue
if not file.filename.endswith('.csv'):
validation_results.append({
"file_type": file_type,
"valid": False,
"error": "File must be a CSV file"
})
continue
model_class = CSV_MODEL_MAPPING.get(file_type)
try:
content = await file.read()
# Try multiple encodings for legacy CSV files (include BOM-friendly utf-8-sig)
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
validation_results.append({
"file_type": file_type,
"valid": False,
"error": "Could not decode CSV file encoding"
})
continue
# Handle CSV parsing issues with legacy files
rows_list, csv_headers = parse_csv_with_fallback(csv_content)
# Check headers and build dynamic mapping
mapping_info = _build_dynamic_mapping(csv_headers, model_class, file_type)
mapped_headers = mapping_info["mapped_headers"]
unmapped_headers = mapping_info["unmapped_headers"]
# Sample data validation
sample_rows = []
errors = []
for row_num, row in enumerate(rows_list, start=2):
if row_num > 12: # Only check first 10 data rows
break
sample_rows.append(row)
# Check for data type issues
for csv_field, db_field in mapped_headers.items():
if csv_field in row and row[csv_field]:
try:
convert_value(row[csv_field], db_field)
except Exception as e:
errors.append({
"row": row_num,
"field": csv_field,
"value": row[csv_field],
"error": str(e)
})
validation_results.append({
"file_type": file_type,
"valid": len(mapped_headers) > 0 and len(errors) == 0,
"headers": {
"found": csv_headers,
"mapped": mapped_headers,
"unmapped": unmapped_headers
},
"sample_data": sample_rows[:5], # Limit sample data for batch operation
"validation_errors": errors[:5], # First 5 errors only
"total_errors": len(errors),
"auto_mapping": {
"suggestions": mapping_info["suggestions"],
},
})
# Reset file pointer for potential future use
await file.seek(0)
except Exception as e:
validation_results.append({
"file_type": file_type,
"valid": False,
"error": f"Validation failed: {str(e)}"
})
# Summary statistics
total_files = len(validation_results)
valid_files = len([r for r in validation_results if r["valid"]])
invalid_files = total_files - valid_files
return {
"batch_validation_results": validation_results,
"summary": {
"total_files": total_files,
"valid_files": valid_files,
"invalid_files": invalid_files,
"all_valid": invalid_files == 0
}
}
@router.post("/batch-upload")
async def batch_import_csv_files(
files: List[UploadFile] = UploadFileForm(...),
replace_existing: bool = Form(False),
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Import multiple CSV files in optimal order"""
if len(files) > 25:
raise HTTPException(status_code=400, detail="Maximum 25 files allowed per batch")
# Define optimal import order based on dependencies
import_order = IMPORT_ORDER
# Sort uploaded files by optimal import order
file_map = {f.filename: f for f in files}
ordered_files = []
for file_type in import_order:
if file_type in file_map:
ordered_files.append((file_type, file_map[file_type]))
del file_map[file_type]
# Add any remaining files not in the predefined order
for filename, file in file_map.items():
ordered_files.append((filename, file))
results = []
total_imported = 0
total_errors = 0
# Create import audit row (running)
audit_row = ImportAudit(
status="running",
total_files=len(files),
successful_files=0,
failed_files=0,
total_imported=0,
total_errors=0,
initiated_by_user_id=getattr(current_user, "id", None),
initiated_by_username=getattr(current_user, "username", None),
message="Batch import started",
)
db.add(audit_row)
db.commit()
db.refresh(audit_row)
# Directory to persist uploaded files for this audit (for reruns)
audit_dir = Path(settings.upload_dir).joinpath("import_audits", str(audit_row.id))
try:
audit_dir.mkdir(parents=True, exist_ok=True)
except Exception:
pass
for file_type, file in ordered_files:
if file_type not in CSV_MODEL_MAPPING:
# Fallback flexible-only import for unknown file structures
try:
await file.seek(0)
content = await file.read()
# Save original upload to disk for potential reruns
saved_path = None
try:
file_path = audit_dir.joinpath(file_type)
with open(file_path, "wb") as fh:
fh.write(content)
saved_path = str(file_path)
except Exception:
saved_path = None
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
results.append({
"file_type": file_type,
"status": "failed",
"message": "Could not decode CSV file encoding"
})
continue
rows_list, headers = parse_csv_with_fallback(csv_content)
flexible_count = 0
for row in rows_list:
# Save entire row as flexible JSON
db.add(
FlexibleImport(
file_type=file_type,
target_table=None,
primary_key_field=None,
primary_key_value=None,
extra_data=make_json_safe({k: v for k, v in (row or {}).items() if v not in (None, "")}),
)
)
flexible_count += 1
if flexible_count % 200 == 0:
db.commit()
db.commit()
total_imported += flexible_count
# Persist per-file result row
results.append({
"file_type": file_type,
"status": "success",
"imported_count": flexible_count,
"errors": 0,
"message": f"Stored {flexible_count} rows as flexible data (no known model)",
"auto_mapping": {
"mapped_headers": {},
"unmapped_headers": list(headers),
"flexible_saved_rows": flexible_count,
},
})
try:
db.add(ImportAuditFile(
audit_id=audit_row.id,
file_type=file_type,
status="success",
imported_count=flexible_count,
errors=0,
message=f"Stored {flexible_count} rows as flexible data",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
continue
except Exception as e:
db.rollback()
results.append({
"file_type": file_type,
"status": "failed",
"message": f"Flexible import failed: {str(e)}"
})
try:
db.add(ImportAuditFile(
audit_id=audit_row.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message=f"Flexible import failed: {str(e)}",
details={}
))
db.commit()
except Exception:
db.rollback()
continue
try:
# Reset file pointer
await file.seek(0)
# Import this file using auto-discovery mapping
model_class = CSV_MODEL_MAPPING[file_type]
content = await file.read()
# Save original upload to disk for potential reruns
saved_path = None
try:
file_path = audit_dir.joinpath(file_type)
with open(file_path, "wb") as fh:
fh.write(content)
saved_path = str(file_path)
except Exception:
saved_path = None
# Try multiple encodings for legacy CSV files
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
results.append({
"file_type": file_type,
"status": "failed",
"message": "Could not decode CSV file encoding"
})
try:
db.add(ImportAuditFile(
audit_id=audit_row.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message="Could not decode CSV file encoding",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
continue
# Handle CSV parsing issues with legacy files
rows_list, csv_headers = parse_csv_with_fallback(csv_content)
mapping_info = _build_dynamic_mapping(csv_headers, model_class, file_type)
mapped_headers = mapping_info["mapped_headers"]
unmapped_headers = mapping_info["unmapped_headers"]
imported_count = 0
errors = []
flexible_saved = 0
# Special handling: assign line numbers per form for FORM_LST.csv
form_lst_line_counters: Dict[str, int] = {}
# If replace_existing is True and this is the first file of this type
if replace_existing:
db.query(model_class).delete()
db.query(FlexibleImport).filter(
FlexibleImport.file_type == file_type,
FlexibleImport.target_table == model_class.__tablename__,
).delete()
db.commit()
for row_num, row in enumerate(rows_list, start=2):
try:
model_data = {}
for csv_field, db_field in mapped_headers.items():
if csv_field in row and db_field is not None:
converted_value = convert_value(row[csv_field], db_field)
if converted_value is not None:
model_data[db_field] = converted_value
# Inject sequential line_number for FORM_LST rows grouped by form_id
if file_type == "FORM_LST.csv":
form_id_value = model_data.get("form_id")
if form_id_value:
current = form_lst_line_counters.get(str(form_id_value), 0) + 1
form_lst_line_counters[str(form_id_value)] = current
if "line_number" not in model_data:
model_data["line_number"] = current
if not any(model_data.values()):
continue
# Fallback: if required non-nullable fields are missing, store row as flexible only
required_fields = _get_required_fields(model_class)
missing_required = [f for f in required_fields if model_data.get(f) in (None, "")]
if missing_required:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data=make_json_safe({
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"missing_required": missing_required,
}),
)
)
flexible_saved += 1
continue
# Special validation for models with required fields
if model_class == Phone:
if 'phone' not in model_data or not model_data['phone']:
continue # Skip phone records without a phone number
if model_class == Rolodex:
if 'last' not in model_data or not model_data['last']:
continue # Skip rolodex records without a last name/company name
if model_class == Ledger:
# Skip ledger records without required fields
if 'empl_num' not in model_data or not model_data['empl_num']:
continue # Skip ledger records without employee number
if 'file_no' not in model_data or not model_data['file_no']:
continue # Skip ledger records without file number
instance = model_class(**model_data)
db.add(instance)
db.flush()
# Link flexible extras
_, pk_names = _get_model_columns(model_class)
pk_field_name = pk_names[0] if len(pk_names) == 1 else None
pk_value = None
if pk_field_name:
try:
pk_value = getattr(instance, pk_field_name)
except Exception:
pk_value = None
extra_data = {}
for csv_field in unmapped_headers:
if csv_field in row and row[csv_field] not in (None, ""):
extra_data[csv_field] = row[csv_field]
if extra_data:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=pk_field_name,
primary_key_value=str(pk_value) if pk_value is not None else None,
extra_data=make_json_safe(extra_data),
)
)
flexible_saved += 1
imported_count += 1
if imported_count % 100 == 0:
db.commit()
except Exception as e:
# Rollback the transaction for this record
db.rollback()
# Persist row in flexible storage instead of counting as error only
try:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data=make_json_safe({
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"error": str(e),
}),
)
)
flexible_saved += 1
except Exception as flex_e:
errors.append({
"row": row_num,
"error": f"{str(e)} | Flexible save failed: {str(flex_e)}",
})
continue
db.commit()
total_imported += imported_count
total_errors += len(errors)
results.append({
"file_type": file_type,
"status": "success" if len(errors) == 0 else "completed_with_errors",
"imported_count": imported_count,
"errors": len(errors),
"message": f"Imported {imported_count} records" + (f" with {len(errors)} errors" if errors else ""),
"auto_mapping": {
"mapped_headers": mapped_headers,
"unmapped_headers": unmapped_headers,
"flexible_saved_rows": flexible_saved,
},
})
try:
db.add(ImportAuditFile(
audit_id=audit_row.id,
file_type=file_type,
status="success" if len(errors) == 0 else "completed_with_errors",
imported_count=imported_count,
errors=len(errors),
message=f"Imported {imported_count} records" + (f" with {len(errors)} errors" if errors else ""),
details={
"mapped_headers": list(mapped_headers.keys()),
"unmapped_count": len(unmapped_headers),
"flexible_saved_rows": flexible_saved,
**({"saved_path": saved_path} if saved_path else {}),
}
))
db.commit()
except Exception:
db.rollback()
except Exception as e:
db.rollback()
results.append({
"file_type": file_type,
"status": "failed",
"message": f"Import failed: {str(e)}"
})
try:
db.add(ImportAuditFile(
audit_id=audit_row.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message=f"Import failed: {str(e)}",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
summary = {
"total_files": len(files),
"successful_files": len([r for r in results if r["status"] in ["success", "completed_with_errors"]]),
"failed_files": len([r for r in results if r["status"] == "failed"]),
"total_imported": total_imported,
"total_errors": total_errors
}
# Finalize audit row
try:
audit_row.successful_files = summary["successful_files"]
audit_row.failed_files = summary["failed_files"]
audit_row.total_imported = summary["total_imported"]
audit_row.total_errors = summary["total_errors"]
audit_row.status = "success" if summary["failed_files"] == 0 and summary["total_errors"] == 0 else (
"completed_with_errors" if summary["successful_files"] > 0 else "failed"
)
audit_row.message = f"Batch import completed: {audit_row.successful_files}/{audit_row.total_files} files"
audit_row.finished_at = datetime.now(timezone.utc)
audit_row.details = {
"files": [
{"file_type": r.get("file_type"), "status": r.get("status"), "imported_count": r.get("imported_count", 0), "errors": r.get("errors", 0)}
for r in results
]
}
db.add(audit_row)
db.commit()
except Exception:
db.rollback()
return {
"batch_results": results,
"summary": summary
}
@router.get("/recent-batches")
async def recent_batch_imports(
limit: int = Query(5, ge=1, le=50),
offset: int = Query(0, ge=0),
status: Optional[str] = Query(None, description="Filter by status: running|success|completed_with_errors|failed"),
start: Optional[str] = Query(None, description="ISO datetime start for started_at filter"),
end: Optional[str] = Query(None, description="ISO datetime end for started_at filter"),
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Return recent batch import audit rows (most recent first) with optional filters and pagination."""
q = db.query(ImportAudit)
if status and status.lower() != "all":
q = q.filter(ImportAudit.status == status)
# Date range filters on started_at
try:
if start:
start_dt = datetime.fromisoformat(start)
q = q.filter(ImportAudit.started_at >= start_dt)
except Exception:
pass
try:
if end:
end_dt = datetime.fromisoformat(end)
q = q.filter(ImportAudit.started_at <= end_dt)
except Exception:
pass
total = q.count()
rows = (
q.order_by(ImportAudit.started_at.desc())
.offset(offset)
.limit(limit)
.all()
)
def _row(r: ImportAudit):
return {
"id": r.id,
"started_at": r.started_at.isoformat() if r.started_at else None,
"finished_at": r.finished_at.isoformat() if r.finished_at else None,
"status": r.status,
"total_files": r.total_files,
"successful_files": r.successful_files,
"failed_files": r.failed_files,
"total_imported": r.total_imported,
"total_errors": r.total_errors,
"initiated_by": r.initiated_by_username,
"message": r.message,
}
return {"recent": [_row(r) for r in rows], "total": total, "limit": limit, "offset": offset}
@router.get("/recent-batches/{audit_id}")
async def get_batch_details(
audit_id: int,
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Return a specific audit entry with per-file details."""
audit = db.query(ImportAudit).filter(ImportAudit.id == audit_id).first()
if not audit:
raise HTTPException(status_code=404, detail="Audit entry not found")
files = (
db.query(ImportAuditFile)
.filter(ImportAuditFile.audit_id == audit.id)
.order_by(ImportAuditFile.id.asc())
.all()
)
def _row(r: ImportAudit):
return {
"id": r.id,
"started_at": r.started_at.isoformat() if r.started_at else None,
"finished_at": r.finished_at.isoformat() if r.finished_at else None,
"status": r.status,
"total_files": r.total_files,
"successful_files": r.successful_files,
"failed_files": r.failed_files,
"total_imported": r.total_imported,
"total_errors": r.total_errors,
"initiated_by": r.initiated_by_username,
"message": r.message,
"details": r.details or {},
}
def _file(f: ImportAuditFile):
return {
"id": f.id,
"file_type": f.file_type,
"status": f.status,
"imported_count": f.imported_count,
"errors": f.errors,
"message": f.message,
"details": f.details or {},
"created_at": f.created_at.isoformat() if f.created_at else None,
}
return {"audit": _row(audit), "files": [_file(f) for f in files]}
@router.post("/recent-batches/{audit_id}/rerun-failed")
async def rerun_failed_files(
audit_id: int,
replace_existing: bool = Form(False),
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user)
):
"""Re-run only failed files for a given audit. Creates a new audit entry for the rerun."""
prior = db.query(ImportAudit).filter(ImportAudit.id == audit_id).first()
if not prior:
raise HTTPException(status_code=404, detail="Audit entry not found")
failed_files: List[ImportAuditFile] = (
db.query(ImportAuditFile)
.filter(ImportAuditFile.audit_id == audit_id, ImportAuditFile.status == "failed")
.all()
)
if not failed_files:
raise HTTPException(status_code=400, detail="No failed files to rerun for this audit")
# Build list of (file_type, path) that exist
items: List[Tuple[str, str]] = []
for f in failed_files:
saved_path = None
try:
saved_path = (f.details or {}).get("saved_path")
except Exception:
saved_path = None
if saved_path and os.path.exists(saved_path):
items.append((f.file_type, saved_path))
if not items:
raise HTTPException(status_code=400, detail="No saved files available to rerun. Upload again.")
# Import order for sorting
import_order = IMPORT_ORDER
order_index = {name: i for i, name in enumerate(import_order)}
items.sort(key=lambda x: order_index.get(x[0], len(import_order) + 1))
# Create new audit row for rerun
rerun_audit = ImportAudit(
status="running",
total_files=len(items),
successful_files=0,
failed_files=0,
total_imported=0,
total_errors=0,
initiated_by_user_id=getattr(current_user, "id", None),
initiated_by_username=getattr(current_user, "username", None),
message=f"Rerun failed files for audit #{audit_id}",
details={"rerun_of": audit_id},
)
db.add(rerun_audit)
db.commit()
db.refresh(rerun_audit)
# Directory to persist rerun files
rerun_dir = Path(settings.upload_dir).joinpath("import_audits", str(rerun_audit.id))
try:
rerun_dir.mkdir(parents=True, exist_ok=True)
except Exception:
pass
results: List[Dict[str, Any]] = []
total_imported = 0
total_errors = 0
for file_type, path in items:
try:
with open(path, "rb") as fh:
content = fh.read()
# Save a copy under the rerun audit
saved_path = None
try:
file_path = rerun_dir.joinpath(file_type)
with open(file_path, "wb") as out:
out.write(content)
saved_path = str(file_path)
except Exception:
saved_path = None
if file_type not in CSV_MODEL_MAPPING:
# Flexible-only path
encodings = ENCODINGS
csv_content = None
for enc in encodings:
try:
csv_content = content.decode(enc)
break
except UnicodeDecodeError:
continue
if csv_content is None:
results.append({"file_type": file_type, "status": "failed", "message": "Could not decode CSV file encoding"})
try:
db.add(ImportAuditFile(
audit_id=rerun_audit.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message="Could not decode CSV file encoding",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
continue
rows_list, _headers = parse_csv_with_fallback(csv_content)
flexible_count = 0
for row in rows_list:
db.add(
FlexibleImport(
file_type=file_type,
target_table=None,
primary_key_field=None,
primary_key_value=None,
extra_data=make_json_safe({k: v for k, v in (row or {}).items() if v not in (None, "")}),
)
)
flexible_count += 1
if flexible_count % 200 == 0:
db.commit()
db.commit()
total_imported += flexible_count
results.append({
"file_type": file_type,
"status": "success",
"imported_count": flexible_count,
"errors": 0,
"message": f"Stored {flexible_count} rows as flexible data (no known model)",
})
try:
db.add(ImportAuditFile(
audit_id=rerun_audit.id,
file_type=file_type,
status="success",
imported_count=flexible_count,
errors=0,
message=f"Stored {flexible_count} rows as flexible data",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
continue
# Known model path
model_class = CSV_MODEL_MAPPING[file_type]
encodings = ENCODINGS
csv_content = None
for enc in encodings:
try:
csv_content = content.decode(enc)
break
except UnicodeDecodeError:
continue
if csv_content is None:
results.append({"file_type": file_type, "status": "failed", "message": "Could not decode CSV file encoding"})
try:
db.add(ImportAuditFile(
audit_id=rerun_audit.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message="Could not decode CSV file encoding",
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
continue
csv_reader = csv.DictReader(io.StringIO(csv_content), delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_headers = csv_reader.fieldnames or []
mapping_info = _build_dynamic_mapping(csv_headers, model_class, file_type)
mapped_headers = mapping_info["mapped_headers"]
unmapped_headers = mapping_info["unmapped_headers"]
imported_count = 0
errors: List[Dict[str, Any]] = []
# Special handling: assign line numbers per form for FORM_LST.csv
form_lst_line_counters: Dict[str, int] = {}
if replace_existing:
db.query(model_class).delete()
db.query(FlexibleImport).filter(
FlexibleImport.file_type == file_type,
FlexibleImport.target_table == model_class.__tablename__,
).delete()
db.commit()
for row_num, row in enumerate(csv_reader, start=2):
try:
model_data: Dict[str, Any] = {}
for csv_field, db_field in mapped_headers.items():
if csv_field in row and db_field is not None:
converted_value = convert_value(row[csv_field], db_field)
if converted_value is not None:
model_data[db_field] = converted_value
# Inject sequential line_number for FORM_LST rows grouped by form_id
if file_type == "FORM_LST.csv":
form_id_value = model_data.get("form_id")
if form_id_value:
current = form_lst_line_counters.get(str(form_id_value), 0) + 1
form_lst_line_counters[str(form_id_value)] = current
if "line_number" not in model_data:
model_data["line_number"] = current
if not any(model_data.values()):
continue
required_fields = _get_required_fields(model_class)
missing_required = [f for f in required_fields if model_data.get(f) in (None, "")]
if missing_required:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data={
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"missing_required": missing_required,
},
)
)
continue
if model_class == Phone and (not model_data.get('phone')):
continue
if model_class == Rolodex and (not model_data.get('last')):
continue
if model_class == Ledger and (not model_data.get('empl_num') or not model_data.get('file_no')):
continue
instance = model_class(**model_data)
db.add(instance)
db.flush()
_, pk_names = _get_model_columns(model_class)
pk_field_name = pk_names[0] if len(pk_names) == 1 else None
pk_value = None
if pk_field_name:
try:
pk_value = getattr(instance, pk_field_name)
except Exception:
pk_value = None
extra_data = {}
for csv_field in unmapped_headers:
if csv_field in row and row[csv_field] not in (None, ""):
extra_data[csv_field] = row[csv_field]
if extra_data:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=pk_field_name,
primary_key_value=str(pk_value) if pk_value is not None else None,
extra_data=extra_data,
)
)
imported_count += 1
if imported_count % 100 == 0:
db.commit()
except Exception as e:
db.rollback()
try:
db.add(
FlexibleImport(
file_type=file_type,
target_table=model_class.__tablename__,
primary_key_field=None,
primary_key_value=None,
extra_data={
"mapped": model_data,
"unmapped": {h: row.get(h) for h in unmapped_headers if row.get(h) not in (None, "")},
"error": str(e),
},
)
)
except Exception:
errors.append({"row": row_num, "error": str(e)})
continue
db.commit()
total_imported += imported_count
total_errors += len(errors)
results.append({
"file_type": file_type,
"status": "success" if len(errors) == 0 else "completed_with_errors",
"imported_count": imported_count,
"errors": len(errors),
"message": f"Imported {imported_count} records" + (f" with {len(errors)} errors" if errors else ""),
})
try:
db.add(ImportAuditFile(
audit_id=rerun_audit.id,
file_type=file_type,
status="success" if len(errors) == 0 else "completed_with_errors",
imported_count=imported_count,
errors=len(errors),
message=f"Imported {imported_count} records" + (f" with {len(errors)} errors" if errors else ""),
details={"saved_path": saved_path} if saved_path else {}
))
db.commit()
except Exception:
db.rollback()
except Exception as e:
db.rollback()
results.append({"file_type": file_type, "status": "failed", "message": f"Import failed: {str(e)}"})
try:
db.add(ImportAuditFile(
audit_id=rerun_audit.id,
file_type=file_type,
status="failed",
imported_count=0,
errors=1,
message=f"Import failed: {str(e)}",
details={}
))
db.commit()
except Exception:
db.rollback()
# Finalize rerun audit
summary = {
"total_files": len(items),
"successful_files": len([r for r in results if r["status"] in ["success", "completed_with_errors"]]),
"failed_files": len([r for r in results if r["status"] == "failed"]),
"total_imported": total_imported,
"total_errors": total_errors,
}
try:
rerun_audit.successful_files = summary["successful_files"]
rerun_audit.failed_files = summary["failed_files"]
rerun_audit.total_imported = summary["total_imported"]
rerun_audit.total_errors = summary["total_errors"]
rerun_audit.status = "success" if summary["failed_files"] == 0 and summary["total_errors"] == 0 else (
"completed_with_errors" if summary["successful_files"] > 0 else "failed"
)
rerun_audit.message = f"Rerun completed: {rerun_audit.successful_files}/{rerun_audit.total_files} files"
rerun_audit.finished_at = datetime.now(timezone.utc)
rerun_audit.details = {"rerun_of": audit_id}
db.add(rerun_audit)
db.commit()
except Exception:
db.rollback()
return {"batch_results": results, "summary": summary, "rerun_audit_id": rerun_audit.id}
@router.post("/upload-flexible")
async def upload_flexible_only(
file: UploadFile = UploadFileForm(...),
replace_existing: bool = Form(False),
db: Session = Depends(get_db),
current_user: User = Depends(get_current_user),
):
"""Flexible-only single-file upload.
Accepts any CSV and stores each row as a `FlexibleImport` record with `target_table=None`.
"""
# Ensure CSV
if not file.filename or not file.filename.lower().endswith(".csv"):
raise HTTPException(status_code=400, detail="File must be a CSV file")
file_type = file.filename
try:
# Optionally clear prior flexible rows for this file_type
if replace_existing:
db.query(FlexibleImport).filter(
FlexibleImport.file_type == file_type,
FlexibleImport.target_table == None, # noqa: E711
).delete()
db.commit()
content = await file.read()
encodings = ENCODINGS
csv_content = None
for encoding in encodings:
try:
csv_content = content.decode(encoding)
break
except UnicodeDecodeError:
continue
if csv_content is None:
raise HTTPException(status_code=400, detail="Could not decode CSV file encoding")
reader = csv.DictReader(io.StringIO(csv_content), delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL)
headers = reader.fieldnames or []
imported_count = 0
for row in reader:
payload = {k: v for k, v in (row or {}).items() if v not in (None, "")}
db.add(
FlexibleImport(
file_type=file_type,
target_table=None,
primary_key_field=None,
primary_key_value=None,
extra_data=payload,
)
)
imported_count += 1
if imported_count % 200 == 0:
db.commit()
db.commit()
return {
"file_type": file_type,
"imported_count": imported_count,
"errors": [],
"total_errors": 0,
"auto_mapping": {
"mapped_headers": {},
"unmapped_headers": list(headers),
"flexible_saved_rows": imported_count,
},
"message": f"Stored {imported_count} rows as flexible data (no known model)",
}
except HTTPException:
raise
except Exception as e:
db.rollback()
raise HTTPException(status_code=500, detail=f"Flexible upload failed: {str(e)}")